Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum

نویسندگان

  • Hokyoung Son
  • Ae Ran Park
  • Jae Yun Lim
  • Chanseok Shin
  • Yin-Won Lee
چکیده

Various ascomycete fungi possess sex-specific molecular mechanisms, such as repeat-induced point mutations, meiotic silencing by unpaired DNA, and unusual adenosine-to-inosine RNA editing, for genome defense or gene regulation. Using a combined analysis of functional genetics and deep sequencing of small noncoding RNA (sRNA), mRNA, and the degradome, we found that the sex-specifically induced exonic small interference RNA (ex-siRNA)-mediated RNA interference (RNAi) mechanism has an important role in fine-tuning the transcriptome during ascospore formation in the head blight fungus Fusarium graminearum. Approximately one-third of the total sRNAs were produced from the gene region, and sRNAs with an antisense direction or 5'-U were involved in post-transcriptional gene regulation by reducing the stability of the corresponding gene transcripts. Although both Dicers and Argonautes partially share their functions, the sex-specific RNAi pathway is primarily mediated by FgDicer1 and FgAgo2, while the constitutively expressed RNAi components FgDicer2 and FgAgo1 are responsible for hairpin-induced RNAi. Based on our results, we concluded that F. graminearum primarily utilizes ex-siRNA-mediated RNAi for ascosporogenesis but not for genome defenses and other developmental stages. Each fungal species appears to have evolved RNAi-based gene regulation for specific developmental stages or stress responses. This study provides new insights into the regulatory role of sRNAs in fungi and other lower eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum

The RNA interference (RNAi) plays a critical role in gene regulation in a variety of eukaryotic organisms. However, the role of RNAi remains largely unclear in plant pathogenic fungi. In this study, we explored the roles of core components of the RNAi pathway in Fusarium graminearum, the major causal agent of wheat head blight. Our results demonstrated that the hairpin RNA (hpRNA) can efficient...

متن کامل

A Large-Scale Functional Analysis of Putative Target Genes of Mating-Type Loci Provides Insight into the Regulation of Sexual Development of the Cereal Pathogen Fusarium graminearum

Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces sexual progeny (ascospore) as an important overwintering and dissemination strategy for completing the disease cycle. This homothallic ascomycetous species does not require a partner for sexual mating; instead, it carries two opposite mating-type (MAT) loci in a single nucleus to control sexual development....

متن کامل

Transcriptome-Based Discovery of Fusarium graminearum Stress Responses to FgHV1 Infection

Fusarium graminearum hypovirus 1 (FgHV1), which is phylogenetically related to Cryphonectria hypovirus 1 (CHV1), is a virus in the family Hypoviridae that infects the plant pathogenic fungus F. graminearum. Although hypovirus FgHV1 infection does not attenuate the virulence of the host (hypovirulence), it results in defects in mycelial growth and spore production. We now report that the vertica...

متن کامل

Functional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae

The homothallic ascomycete fungus Gibberella zeae (anamorph: Fusarium graminearum) is a major toxigenic plant pathogen that causes head blight disease on small-grain cereals. The fungus produces the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) in infected hosts, posing a threat to human and animal health. Despite its agricultural and toxicological importance, the molecular mechanisms u...

متن کامل

Bcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia

Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017